

An Energy Efficiency Workshop & Exposition

Palm Springs, California

Modular Technology for Large Integrated Energy Systems

The Journey of a CCHP Project

- Fort Bragg Overview
- Honeywell Role at Fort Bragg
- Energy Management Strategy and Structure
- Central Heating and Cooling Plants
- CCHP Evaluation Phase 1
- DOE Award
- Final? Cycle Design of Retrofit Project
- Conclusions

Fort Bragg Army Post

- Mission
 - > Home of 44,000 Soldiers
 - ▶ 82nd Airborne, Special Forces & Others
 - Simmons Army Airfield
 - Pope Air Force Base
- Public Works Infrastructure Municipal Utility
- Energy Consumption
 - > 450 x 10⁶ kWh of electricity per year
 - > 100 MW Peak Demand
 - > 1.5 BCF of gas per year

Honeywell Roll at Fort Bragg

- Energy Savings Performance Contractor
- ESPC TEAM Contracting Vehicle
 - Over \$51.6 million in improvement projects
 - Annual energy savings of over \$8.5 million
- Energy Strategy -Integrated Supply Chain Management
 - Reduce Energy Cost Demand, Distribution, Supply
 - Manage Energy Risk Both physical and financial
 - ➤ EO-13123 Energy Efficiency

Improve the Quality of Life for Soldiers

ESPC Energy Supply Chain Initiatives

- Demand-Side
 - > HVAC, Controls, Lighting, On-site generation
- Distribution
 - Central heating & cooling plant modernization
- Supply-Side
 - Gas procurement, support utility contract negotiations, support utility rate intervention
- Energy Information System
 - Central Energy Control Cockpit
 - Monitoring, trending, analysis, fuel mgmt., RTP load management(markets, forecasting), M&V reporting

Central Plant Operations

- Plant modernization program
 - Chiller replacements
 - Controls/monitoring upgrades & integration
 - Primary/Secondary chilled water distribution
- Honeywell operates & maintains central heating and cooling plants.
- Candidates for CCHP four plants
- 82nd Division Heating Plant Selected for CCHP- newest and largest

82nd Heating & Cooling

- Thermal load -
 - Continuous Steam and hot water to 100 buildings and 3.1 million ft² (120 x 10⁶Btu/hr)
 - Chilled water load 500 tons (another 3,000 tons provided by 82nd Cooling Plant)
- Electrical connections, close to 3 primary circuits & a main substation
- Renovation & expansion programBarracks and Admin. Bldgs.
- Four existing unreliable boilers

CCHP Challenges – Modularity a Solution?

- Capital Cost
 - Over \$1,000/kW construction cost
 - Plus NG piping, development, engineering, financing, O&M
- The spark spread
 - Competition base load energy from central power plants
 - Natural gas price volatility
 - Natural gas LDC charges
- Technical complexity
- Government/DOD budgeting process maintenance budget is last, utility bills are must-pay
- Monopoly (regulated) utility tariff structures and rules designed to discourage on-site generation

Peak Loads Due to Air Conditioning, The Real Challenge at Fort Bragg

July - Peak Loads

Summer, Spring Average Daily Profiles

Real-Time Electricity

CBL vs. Actual - 1 Week, August

Base Load – Blended Average -\$.042/kWh 30 Minute Intervals

Peak Load - Range \$.09/kWh -\$.90/kWh

Fuel Procurement

Dual Fuel Capability

Natural Gas

- Low Emissions
- Efficient
- Price RiskManagement

Fuel Oil

- Emergency backup
- Allows interruptible gas
- Ceiling price for gas

Initial Evaluation Publication

"CHP Demonstration Projects at Federal Facilities" The FEMP Role

Oak Ridge National Labs

- Steve Fischer
- Patrick HughesCDH Energy
 - Steve Carlson
- Hugh Henderson

Initial Configuration & Heating Load Distribution

Initial Configuration - Conclusions

Thermal Load

- Hourly vs. Daily
- Uncertainty of future load

Savings

- Electricity Demand
 - Contract vs. Use
 - The regulated version of RTP

Final Configuration?

- Single 5 MWTurbine-generator
- HRSG & Chiller
- Inlet Cooling
- Plant ControlsUpgrade

- Lower Capital Cost
- **2.** Higher Savings
 - Demand reduction offsets growth
 - Baseload
 - Full Utilization of thermal load

DOE Reference Modular Design

Bold black values are average measurements for 16 days from 2/2/02 to 2/18/02

Reference Design Challenges

- Applications for large, CCHP projects
- Standard design for retrofits
- Indirect fired absorption chiller ductwork
- Absorption chiller cyclical loads
- Operational optimization
- Capital requirements
- Project complexity

DOE - Integrated Energy Systems Focus

- Self-funding combined heat & power
- Operational optimization
 - Forecasting & load management currently operating
 - Fuel switching, cycle optimization being developed.
- □ Chiller implementation 1000 Ton
 - Indirect fired ductwork, flue gas controls
 - Steam
 - > 0&M

Optimization & Supervisory Controls

Conclusions

The Fort Bragg design is applicable at:

- Very large installations and/or
- Very large thermal loads

Most large government facilities have limited thermal load and/or limited occupied hours

- Less than 2 MW baseload
- Heating & cooling demands track occupancy and temperature.

Conclusions

- Integrated Energy Systems are critical for efficiency and risk management.
- Stand-alone retrofit projects are difficult to justify and implement as efficiency improvements, only.
- Integrated Energy Systems should be seriously considered when central plants are expanded or renovated.

Next Steps - Modular Design Study

Marketing Study

- Most needed sizes
- User willingness to consider lifecycle cost in capital investments
- Gas market forecast

Engineering & Cost Analysis

- Cycle design
- Recip vs. GT's
- Environment
- Packaging
- Optimization value